Variation in spinal load and trunk dynamics during repeated lifting exertions.

نویسندگان

  • K P Granata
  • W S Marras
  • K G Davis
چکیده

OBJECTIVES To quantify the variability in lifting motions, trunk moments, and spinal loads associated with repeated lifting exertions and to identify workplace factors that influence the biomechanical variability. DESIGN Measurement of trunk dynamics, moments and muscle activities were used as inputs into EMG assisted model of spinal loading. BACKGROUND Traditional biomechanical models assume repeated performance of a lifting task produces little variability in spinal load because the assessments overlook variability in lifting dynamics and muscle coactivity. METHODS Five experienced and seven inexperienced manual materials handlers performed 10 repeated lifts at each combination of load weight, task asymmetry and lifting velocity. RESULTS Box weight, task asymmetry and job experience influenced the magnitude and variability of spinal load during repeated lifting exertions. Surprisingly, experienced subjects demonstrated significantly greater spinal loads and within-subject variability in spinal load than inexperienced subjects. Trial-to-trial variability accounted for 14% of the total variation in compression overall and 32% in lateral shear load. Although the mean spinal load was safely below the NIOSH recommended limit; due to variability about the mean, more than 20% of the lifts exceeded the recommended limit. CONCLUSION Spinal load changed markedly from one exertion to the next despite identical task requirements. Trial-to-trial variability in kinematics, kinetics, and spinal load were influenced by workplace factors, and may play a role in the risk of low-back pain. RELEVANCE Ergonomic assessments considering only the mean value of spinal load overlook the fact that a large fraction of the lifts may exceed recommended levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biologically-assisted curved muscle model of the lumbar spine: Model validation.

BACKGROUND Biomechanical models have been developed to predict spinal loads in vivo to assess potential risk of injury in workplaces. Most models represent trunk muscles with straight-lines. Even though straight-line muscles behave reasonably well in simple exertions, they could be less reliable during complex dynamic exertions. A curved muscle representation was developed to overcome this issu...

متن کامل

Low-Back Biomechanics and Static Stability During Isometric Pushing

Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction o...

متن کامل

Effect of foot movement and an elastic lumbar back support on spinal loading during free-dynamic symmetric and asymmetric lifting exertions.

The aim of this study was to assess the effect of an elastic lumbar back support on spinal loading and trunk, hip and knee kinematics while allowing subjects to move their feet during lifting exertions. Predicted spinal forces and moments about the L5/S1 intervertebral disc from a three-dimensional EMG-assisted biomechanical model, trunk position, velocities and accelerations, and hip and knee ...

متن کامل

Local dynamic stability of trunk movements during the repetitive lifting of loads.

The local dynamic stability of trunk movements was assessed during repetitive lifting using nonlinear Lyapunov analyses. The goal was to assess how varying the load-in-hands affects the neuromuscular control of lumbar spinal stability. Thirty healthy participants (15M, 15F) performed repetitive lifting at 10 cycles per minute for three minutes under two load conditions: zero load and 10% of eac...

متن کامل

Cost-benefit of muscle cocontraction in protecting against spinal instability.

STUDY DESIGN Lifting dynamics and electromyographic activity were evaluated using a biomechanical model of spinal equilibrium and stability to assess cost-benefit effects of antagonistic muscle cocontraction on the risk of stability failure. OBJECTIVES To evaluate whether increased biomechanical stability associated with antagonistic cocontraction was capable of stabilizing the related increa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical biomechanics

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 1999